Design and Evaluation of Neural Networks for Coin Recognition by Using GA and SA
نویسندگان
چکیده
In this paper, we propose a method to design a neural network(NN) by using a genetic algorithm(GA) and simulated annealing(SA). And also, in order to demonstrate the effectiveness of the proposed scheme, we apply the proposed scheme to a coin recognition example. In general, as a problem becomes complex and large-scale, the number of operations increases and hardware implementation to real systems (coin recognition machines) using NNs becomes difficult. Therefore, we propose the method which makes a small-sized NN system to achieve a cost reduction and to simplify hardware implementation to the real machines. The coin images used in this paper were taken by a cheap scanner. Then they are not perfect, but a part of the coin image could be used in computer simulations. Input signals, which are Fourier spectra, are learned by a three-layered NN. The inputs to NN are selected by using GA with SA to make a small-sized NN. Simulation results show that the proposed scheme is effencive to find a small number of input signals for coin recognition.
منابع مشابه
Using Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملAn Empirical Study of Two Approaches to Automated pRAM Network Design
The application of Genetic Algorithms (GAs) to the automated design of artiicial neural networks has received much attention in recent years. A number of common network models have been studied. This paper presents empirical results on the application of GAs to the Probabilistic RAM (pRAM) network model. Pattern recognition tasks are presented to the pRAM networks. These results are compared wi...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملLIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK
In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...
متن کامل